
On Non-deterministic Problem (NP): Finding a
Relation Between Sudoku and DNA Sequencing

With Graph Coloring
Naufarrel Zhafif Abhista - 13523149

Informatics Major
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13523149@std.stei.itb.ac.id

naufarrelzhafifabhista@gmail.com

Abstract—The class of Non-deterministic Polynomial-time (NP)
problems represents a major frontier in computer science, encom-
passing a vast number of computationally intensive challenges
found in diverse real-world domains. This paper explores the
application of a classic NP-complete problem, Graph Coloring,
as a versatile tool for understanding and addressing two such
challenges: the logic puzzle Sudoku and the bioinformatics
problem of DNA sequencing. We demonstrate how Sudoku
can be directly transformed into a graph coloring problem,
where the puzzle’s constraints are perfectly mirrored by the
graph’s structure, allowing for a solution via algorithms like
backtracking. In contrast, for the immense and complex task
of DNA fragment assembly, we show that while a direct coloring
approach is infeasible due to scale and complexity, the concept of
”coloring” serves as a powerful conceptual model. By comparing
these two applications, this paper highlights the dual role of graph
coloring as both a direct solving mechanism and an abstract
modeling tool.

Index Terms—NP-Complete, Graph Coloring, Sudoku, DNA
Sequencing, Fragment Assembly, Backtracking, Heuristic,
Greedy.

I. INTRODUCTION

A. Background

In the landscape of modern computation, problems are often
categorized by the resources required to solve them, with
time being the most critical constraint. This has given rise to
the field of computational complexity theory, which seeks to
classify computational problems according to their inherent
difficulty. A computational problem can be understood as
a question that a computer can answer, often framed as a
decision problem with a ”yes” or ”no” (”accept” or ”reject”)
output [1].

At the core of this classification lies the distinction between
problems that are considered ”easy” and those that are ”hard.”
[2] The class P, for Polynomial time, encompasses all decision
problems that can be solved by a deterministic algorithm in
a duration that is a polynomial function of the size of the
input. These problems are deemed computationally ”tractable”
or ”efficiently solvable”. Examples include sorting a list or
finding the shortest path between two points in a network. In
contrast, the class NP, for Non-deterministic Polynomial time,

includes decision problems for which a proposed solution,
or ”certificate,” can be verified for correctness in polynomial
time. The crucial distinction is between solving a problem and
verifying a solution. For instance, finding the prime factors
of a very large number is believed to be difficult (not in P),
but verifying that a given set of factors is correct is easy (in
NP)—one simply has to multiply them together.

B. Problem Statement

This paper investigates two problems from vastly different
domains: the popular logic puzzle Sudoku and the fundamental
bioinformatics challenge of DNA Fragment Assembly. Sudoku
is a well-defined and discrete puzzle with a finite set of rules
and a constrained solution space. The objective is to fill a
grid with numbers such that each row, column, and sub-grid
contains each number exactly once [3]. While the rules are
simple, finding a solution can be a non-trivial combinatorial
task.

DNA fragment assembly, on the other hand, is a large-
scale, data-intensive problem central to modern genomics.
High-throughput sequencing technologies cannot read a whole
genome at once; instead, they produce millions or billions
of short, overlapping DNA fragments called ”reads”. The
computational task is to reassemble these reads into the
original, long genomic sequence. This process is complicated
by sequencing errors and, most critically, by the presence of
repetitive sequences—identical or near-identical stretches of
DNA that appear in multiple locations throughout the genome.
These repeats create profound ambiguity, making it difficult to
determine the correct path of assembly.

Despite their differences in context, scale, and applica-
tion—one a recreational pastime, the other a cornerstone of
biological research—this paper posits that both Sudoku and
DNA fragment assembly can be understood and analyzed
through the unifying lens of a single, powerful abstraction
from theoretical computer science: the Graph Coloring prob-
lem.



C. Objectives

The primary objectives of this paper are threefold, aiming
to bridge the gap between abstract theory and practical appli-
cation:

1) To formally define the class of NP-complete problems
and establish Graph Coloring as a canonical member of
this class, providing a robust theoretical foundation for
the subsequent analysis.

2) To demonstrate the direct and literal transformation of a
Sudoku puzzle into a Graph Coloring problem, where a
valid coloring of the corresponding graph is equivalent
to a solution of the puzzle.

3) To explore the more conceptual and metaphorical appli-
cation of graph coloring principles to model and resolve
ambiguities in DNA fragment assembly, particularly
those arising from genomic repeats.

4) To synthesize these two case studies, drawing nuanced
conclusions about how the inherent computational com-
plexity and, crucially, the scale of a problem dictate
the choice between exact, brute-force algorithms and
heuristic or problem-remodeling approaches.

By examining these two cases, this paper will illustrate
the versatile power of NP-complete problems not only as
benchmarks for computational hardness but also as flexible
modeling tools for understanding and tackling complex chal-
lenges across scientific and recreational domains.

II. THEORITICAL FOUNDATION

A. P, NP, and NP-Completeness

To understand the connection between Sudoku and DNA
sequencing, it is essential to first establish a formal framework
for computational complexity. This framework is built upon a
hierarchy of classes that categorize problems based on their
difficulty.

• P (Polynomial Time): This class contains decision prob-
lems that can be solved by a deterministic Turing machine
in a time that is a polynomial function of the input
size, denoted as O(nk) for some constant k. These are
problems for which efficient algorithms are known to
exist.

• NP (Non-deterministic Polynomial Time): This class
contains decision problems for which, if the answer is
”yes,” there exists a proof or ”certificate” that can be
verified in polynomial time by a deterministic Turing
machine. For example, the problem ”Does this graph have
a Hamiltonian path?” is in NP because if such a path is
given (the certificate), one can easily check in polynomial
time that it visits every vertex exactly once. All problems
in P are also in NP, since if a problem can be solved
quickly, its solution can certainly be verified quickly. The
central question remains whether P = NP

• NP-hard: A problem is classified as NP-hard if every
problem in NP can be reduced to it in polynomial time.
A reduction is a transformation of an instance of one
problem into an instance of another. If problem A reduces

to problem B, a solution for B can be used to solve
A. Thus, NP-hard problems are at least as difficult as
the hardest problems in NP. An NP-hard problem is
not necessarily in NP itself; it could be even harder,
for instance, a problem for which a solution cannot be
verified in polynomial time.

• NP-complete (NPC): A problem is NP-complete if it sat-
isfies two conditions: (1) it is in NP, and (2) it is NP-hard.
These problems represent the most difficult problems
within the NP class. The discovery of a polynomial-time
algorithm for any single NP-complete problem would
automatically provide a polynomial-time algorithm for
every problem in NP, thereby proving that P=NP.

The existence of NP-complete problems was not obvious
until the Cook-Levin theorem (1971) [5], which proved that
the Boolean Satisfiability Problem (SAT) is NP-complete.
SAT asks whether there exists an assignment of truth values
(True/False) to variables in a given Boolean formula that
makes the entire formula evaluate to True. The Cook-Levin
theorem established SAT as the first NP-complete problem,
providing a foundational benchmark from which the NP-
completeness of thousands of other problems could be proven
through polynomial-time reductions.

B. Graph Coloring

Among the most studied NP-complete problems is the
Graph Coloring problem, whose simple statement belies its
profound computational complexity.

A graph G is a mathematical structure consisting of a set of
vertices V (or nodes) and a set of edges E that connect pairs
of vertices. A proper vertex coloring is an assignment of a
label, or ”color,” to each vertex of the graph such that no two
adjacent vertices (i.e., vertices connected by an edge) receive
the same color. A graph is said to be k-colorable if it can be
properly colored with at most k colors. The minimum number
of colors required to properly color a graph G is known as
its chromatic number, denoted χ(G). The k-Coloring decision
problem asks: given a graph G and an integer k, is G k-
colorable? The complexity of this problem famously depends
on the value of k.

• 2-Coloring: Determining if a graph can be colored with
just two colors is in P. This is equivalent to checking if
the graph is bipartite (i.e., its vertices can be divided into
two disjoint sets such that every edge connects a vertex in
one set to one in the other), which can be done efficiently
using algorithms like Breadth-First Search.

• 3-Coloring: In stark contrast, the 3-Coloring problem is
NP-complete [6]. This sharp transition illustrates how a
seemingly minor change to a problem’s constraints can
push it across the boundary from tractable to intractable.

III. METHODOLOGY

The NP-complete nature of graph coloring implies that no
known algorithm can find an optimal coloring for all graphs in
polynomial time. This reality forces a choice between two dis-
tinct paths: exact algorithms that guarantee a correct solution



but may require exponential time, and heuristic algorithms that
run quickly but may produce suboptimal results. The selection
of an approach is dictated by the specific requirements of the
problem at hand, particularly its scale and the necessity of an
exact versus an approximate solution.

A. Backtracking

When an exact solution is non-negotiable and the problem
size is manageable, backtracking serves as a fundamental
algorithmic technique. It is a refined form of brute-force search
that systematically explores the space of all possible solutions.
Rather than generating every possible configuration and then
testing it, backtracking builds a solution incrementally and
abandons a path [4] as soon as it determines that it cannot
lead to a valid solution.

The algorithm operates recursively, akin to a depth-first
search through a state-space tree where each node represents
a partial solution. For the graph coloring problem, the process
is as follows:

1) Begin with an uncolored vertex, typically the first in a
predefined order (e.g., vertex 0).

2) Iterate through the available colors (e.g., 1 to m). For
the current color c, assign it to the vertex.

3) Verify if this assignment is ”safe” by checking that no
adjacent, already-colored vertices have the color c. This
is often implemented in a helper function, is safe().

4) If the assignment is safe, recursively call the backtrack-
ing function for the next uncolored vertex.

5) If the recursive call returns false (meaning it could not
find a valid coloring for the rest of the graph from that
point), or if no safe color can be found for the current
vertex, the algorithm ”backtracks.” It undoes the current
color assignment and tries the next available color in
its loop. If all colors have been tried unsuccessfully, the
function returns false to its caller, propagating the failure
up the recursion stack

6) If the function is called for a vertex beyond the last
one (i.e., all vertices have been successfully colored), a
solution has been found, and the algorithm terminates,
returning true

The key to backtracking’s relative efficiency over naive
brute force is pruning. By abandoning a search path the mo-
ment a constraint is violated, it avoids exploring entire subtrees
of invalid solutions. Nonetheless, in the worst-case scenario,
the algorithm may still need to explore a significant portion of
the solution space. Its time complexity is exponential, typically
expressed as O(mV ), where m is the number of colors and V
is the number of vertices. The space complexity is determined
by the depth of the recursion stack, which is O(V ). This
makes backtracking suitable for problems like Sudoku, where
an exact solution is required and the number of vertices is
small and fixed.

B. Heuristics for Feasible Approximations (Greedy)

For large-scale problems where exponential-time algorithms
are computationally infeasible, the focus shifts from finding

optimal solutions to finding ”good enough” solutions quickly.
This is the domain of heuristic and approximation algorithms.
For graph coloring, the most well-known heuristic is the
Greedy Coloring algorithm, also known as sequential coloring.

The mechanism of the greedy algorithm is simple:
1) First, establish a specific sequence or ordering of all

vertices in the graph,
2) Process the vertices one by one according to this order.

For each vertex vi, assign it the smallest-indexed color
(e.g., the smallest positive integer) that has not already
been used by any of its neighbors that appear earlier in
the sequence (v1, ..., vi−1).

This algorithm is computationally efficient, running in linear
time, O(V + E), where E is the number of edges. However,
its performance is critically dependent on the initial vertex
ordering. A well-chosen order can lead to an optimal coloring
(using χ(G) colors), while a poor ordering can result in a
coloring that uses a number of colors proportional to the
number of vertices, which can be far from optimal. Finding the
absolute best ordering is, unfortunately, an NP-hard problem
in itself.

To address this limitation, various ordering heuristics have
been developed to improve the greedy algorithm’s perfor-
mance. One of the most effective is the Smallest Last Ordering,
also known as degeneracy ordering. This strategy works by
finding the vertex with the lowest degree, removing it from
the graph, and adding it to the end of the order. This process
is repeated on the remaining subgraph until all vertices are
ordered. The degeneracy of a graph, denoted d, is the maxi-
mum degree of any vertex at the moment it is removed. When
the greedy algorithm is applied to a degeneracy ordering,
it is guaranteed to use at most d + 1 colors. This provides
a valuable and efficiently computable upper bound on the
chromatic number, making it a powerful heuristic for large
graphs where optimality is secondary to speed and resource
constraints.

The choice between an exact algorithm like backtracking
and a heuristic like greedy coloring is therefore not merely a
matter of performance. It is a strategic decision rooted in the
fundamental goals of the problem. A puzzle like Sudoku has
a binary standard of success: the solution is either entirely
correct or it is useless. This demands an exact algorithm.
In contrast, many optimization problems modeled by graph
coloring, such as scheduling or resource allocation, exist on a
spectrum of quality. A schedule using one extra time slot but
generated in seconds may be far more valuable than a perfect
schedule that takes centuries to compute. This distinction high-
lights a practical dimension of NP-completeness: the nature of
an acceptable solution fundamentally shapes the algorithmic
approach.

IV. RESULTS AND DISCUSSION

The theoretical framework of graph coloring, despite its
abstract origins, provides a surprisingly potent lens through
which to analyze and solve problems in disparate fields. This
section explores two case studies: the direct application of



graph coloring to solve the Sudoku puzzle and its more
conceptual use as a modeling tool to navigate the complexities
of DNA fragment assembly. The contrast between these two
applications reveals how the scale and nature of a problem
dictate the way we engage with its computational hardness.

A. Sudoku

The process of converting a Sudoku puzzle into a graph is
methodical and precise. For a standard 9×9 grid, the mapping
is as follows:

1) Vertices: Each of the 81 cells in the Sudoku grid is
represented as a unique vertex in the graph. Thus, the
graph has V = 81 vertices.

2) Edges: An edge is drawn between two vertices if their
corresponding cells are constrained by the Sudoku rules.
Specifically, two vertices are connected by an edge if
the cells they represent are in the same row, the same
column, or the same 3 × 3 sub-grid. This construction
results in a highly regular graph where every vertex is
connected to 8 other vertices in its row, 8 in its column,
and 4 more in its 3×3 block (that are not already counted
in the row or column), for a total degree of 20 for each
vertex.

3) Colors: The integers that can be placed in the cells,
typically 1 through 9, correspond to the set of available
”colors”.

A valid solution to the Sudoku puzzle is, therefore, equiva-
lent to a proper 9-coloring of this graph. The rule that no two
adjacent vertices can have the same color perfectly enforces
all the constraints of Sudoku. A puzzle that is presented with
some numbers already filled in is known as a pre-coloring
extension problem. The vertices corresponding to the given
numbers are ”pre-colored,” and the challenge is to extend this
partial coloring to a complete, proper coloring of all 81 vertices
using the nine available colors.

To illustrate the solution process clearly, we consider a
smaller 4×4 Sudoku puzzle, called a ”Shidoku.” [7] The rules
are analogous: fill a 4×4 grid with numbers from 1 to 4 such
that each row, column, and 2×2 sub-grid contains each number
exactly once.

1) Graph Modelling: A 4×4 grid is modeled as a graph
with 16 vertices, one for each cell. Let’s label the cells by
their coordinates (r, c), from (0,0) to (3,3). An edge exists
between (r1, c1) and (r2, c2) if r1 = r2, c1 = c2, or ⌊r1/2⌋ =
⌊r2/2⌋ and ⌊c1/2⌋ = ⌊c2/2⌋ The available colors are the set
{1,2,3,4}.

Consider the following Shidoku puzzle,

1 4
2 3
1 2

4 3

2) Pre-coloring: The given numbers translate to a pre-
colored graph. The vertices corresponding to the cells are
assigned fixed colors:

• Vertex (0,0) is colored ’1’.

• Vertex (0,3) is colored ’4’.
• Vertex (1,1) is colored ’2’.
• Vertex (1,2) is colored ’3’.

And so on for the other given clues.

3) Solving with Backtracking: The backtracking algorithm
is now applied to find a valid 4-coloring for the remaining
uncolored vertices.

1) Start: The algorithm selects the first empty cell, say
(0,1). It needs to assign a color from 1,2,3,4.

2) Attempt Color ’1’: It tries to color vertex (0,1) with ’1’.
The is safe() function checks its neighbors. Vertex (0,0)
is a neighbor (same row) and is already colored ’1’. This
is a conflict.

3) Attempt Color ’2’: The algorithm tries the next color,
’2’. It checks neighbors:

• Row neighbors: (0,0) is ’1’, (0,2) is empty, (0,3) is
’4’. No conflict.

• Column neighbors: (1,1) is ’2’. This is a conflict.

4) Attempt Color ’3’: The algorithm tries ’3’. It checks all
neighbors of (0,1) (in its row, column, and 2×2 block).
Let’s assume no conflicts are found. The assignment is
safe.

• Vertex (0,1) is temporarily colored ’3’.
• The algorithm recursively calls itself for the next

empty cell, say (0,2).

5) Recursive Step and Conflict: The algorithm proceeds,
coloring (0,2), (1,0), etc. Let’s imagine it reaches a state
where it must color vertex (2,2). Its neighbors in the
same row, column, and block might already be colored
with 1,2,3,4. For example:

• Row 2 has a ’1’ and ’2’.
• Column 2 has a ’3’.
• Block 3 (bottom-left) has a ’1’ and ’4’.
• The neighbors of (2,2) are colored 1,2,3,4. The

algorithm tries to color (2,2) with ’1’, ’2’, ’3’, and
’4’, but is safe() returns false for all of them.

6) Backtrack: Having exhausted all color options for (2,2),
the recursive call for this vertex fails and returns false.
The algorithm now backtracks to the vertex that called
it, say (2,0). The call for (2,0) had previously assigned
a color and moved on. Now that its recursive call
has failed, it undoes its assignment and tries the next
available color in its own list. If it had assigned ’3’, it
might now try ’4’. This process continues, unwinding the
recursion and exploring different branches of the search
tree until a complete, valid coloring is found.

This step-by-step process of assigning, checking, and back-
tracking guarantees that if a solution exists, it will be found.
For a fixed-size puzzle like Sudoku, this exponential-time
algorithm is perfectly practical, demonstrating a direct and
successful application of graph coloring to solve a constrained
problem.



B. DNA Fragment Assembly (DNA Sequencing)

While graph coloring provides a literal solution for Sudoku,
its role in DNA fragment assembly is more abstract and
heuristic. The sheer scale and inherent messiness of genomic
data make a direct application of k-coloring infeasible. Instead,
the concepts of graph theory and coloring are used to model
the problem and guide algorithms through its most challenging
aspects, particularly the resolution of repetitive sequences.

In practice, many use shotgun sequencing as a method to do
a DNA sequencing [8]. Shotgun sequencing is a method which
the genome is randomly broken into small DNA fragments.
These fragments then are sequenced individually. The goal
of shotgun sequencing is to reconstruct a genome by piecing
together millions of short, overlapping reads [9]. The primary
obstacle is the presence of repeats, which are sequences that
appear multiple times in the genome. A repeat longer than a
read creates ambiguity: if a read ends within a repeat, it is
unclear which of the repeat’s copies it belongs to, leading to
multiple possible paths for assembly and a ”tangled” graph.

Fig. 1. A Process Of Shotgun Sequencing [8]

The evolution of graph models for this problem illustrates
a classic theme in computer science: when faced with an
intractable problem, change the representation.

• Overlap Graph and the Hamiltonian Path: The most
intuitive model represents each DNA read as a vertex.
An edge connects two vertices if their corresponding
reads overlap significantly. In this overlap graph, the task
of reassembling the genome is equivalent to finding a
path that visits every vertex (read) exactly once. This is
the Hamiltonian Path Problem, which is famously NP-
complete. For a genome with millions of reads, this
approach is computationally prohibitive.

• De Bruijn Graph and the Eulerian Path: A more
sophisticated approach breaks reads into smaller, over-
lapping substrings of a fixed length k, known as k-mers.
A de Bruijn graph is then constructed where vertices
represent (k − 1)-mers and a directed edge is drawn
between two vertices if they form an observed k-mer.
In this representation, repeats are collapsed into single
paths or cycles. The assembly problem is transformed into
finding a path that traverses every edge exactly once—the
Eulerian Path Problem [10]. Unlike the Hamiltonian Path

Problem, the Eulerian Path Problem is solvable in linear
time, a monumental leap in efficiency. This reformulation
cleverly sidesteps the core NP-hard challenge.

Even with the efficient de Bruijn graph model, ambiguity
persists. Branching points in the graph, often caused by
repeats, represent decision points where the assembly path is
uncertain. This is where the concept of ”coloring” becomes a
powerful heuristic tool. In this context, coloring is not about
satisfying local adjacency constraints but about annotating the
graph with external, long-range information to resolve local
ambiguities.

The ”colors” are metadata labels derived from advanced
sequencing techniques:

• Sample of Origin: In metagenomics (sequencing a com-
munity of organisms) or pangenomics (sequencing many
individuals of a species), reads from different sources can
be assigned distinct ”colors.” When traversing the graph,
if a path enters a complex region using a ”blue” edge, the
assembler knows to prefer an exit path that is also ”blue,”
helping to separate the genomes of different organisms or
individuals [11].

• DNA Strand Orientation: DNA is double-stranded, and
reads can originate from either the forward or reverse-
complement strand. Some graph models use two ”colors”
to label nodes or edges based on their strand orientation
[12]. This helps resolve ambiguities that arise when
a sequence overlaps with the reverse complement of
another.

• Linked-Reads and Mate-Pairs: This is arguably the
most powerful application of the coloring concept. Tech-
nologies like 10x Genomics or TELL-Seq partition long
DNA molecules into droplets and attach a unique molec-
ular barcode (the ”color”) to all the short reads generated
from that single long molecule [13]. If reads with the
same barcode are found on two graph edges that are far
apart in the graph, it provides strong evidence that these
two regions were physically close in the original genome.
This long-range information acts as a scaffold, allowing
the assembly algorithm to confidently ”jump” across a
repeat-induced tangle. For example, if an edge entering a
repeat is colored ”green” and an edge exiting the repeat
is also ”green,” the assembler can infer a direct path,
effectively resolving the repeat for that specific instance.

In this paradigm, coloring is a mechanism for integrating
orthogonal datasets to disambiguate a graph structure, trans-
forming an under-determined problem into a solvable one.

C. Synthesis

Comparing the application of graph coloring to Sudoku and
DNA sequencing reveals a fascinating dichotomy in how a
single theoretical concept can be deployed. The differences
are driven primarily by the problem’s scale, goals, and the
nature of its inherent complexity.

In the case of Sudoku, graph coloring is a direct solution
mechanism. The puzzle is transformed into a canonical graph



coloring problem, an exact algorithm (backtracking) is applied,
and the resulting coloring is translated back into a puzzle so-
lution. The problem is NP-complete, but its small, fixed input
size (V = 81) makes an exponential-time algorithm compu-
tationally tractable. The goal is absolute correctness, and an
approximate solution is meaningless. Here, NP-completeness
is a formal property that is confronted head-on.

In DNA sequencing, graph coloring is a conceptual model-
ing heuristic. The initial, intuitive formulation of the problem
as a Hamiltonian Path is NP-complete, but its immense scale
(millions of vertices) renders this approach impossible. The
scientific community’s response was not to build a faster
computer but to re-frame the problem into the polynomially
solvable Eulerian Path problem using de Bruijn graphs. The
concept of ”coloring” is then reintroduced not to solve the
core problem, but to guide the path-finding algorithm through
the remaining points of ambiguity (repeats). The ”colors”
are not abstract labels to be minimized but are carriers of
crucial external data (like barcodes) that provide long-range
constraints. The goal is not to find an optimal coloring but to
reconstruct the most plausible biological sequence.

This contrast highlights a profound principle in applied
computer science: theoretical hardness is a practical barrier
whose height depends on the instance size. For small instances,
we can afford the computational cost of exactness. For massive
instances, we must innovate, either by finding clever reformu-
lations that sidestep the intractability or by using heuristics to
guide us to high-quality, albeit not provably optimal, solutions.

V. CONCLUSION

A. Summary

This paper has explored the multifaceted role of the NP-
complete Graph Coloring problem as a unifying framework
for understanding two fundamentally different challenges: the
recreational logic puzzle of Sudoku and the large-scale bioin-
formatics problem of DNA fragment assembly. The analysis
reveals that the utility of a theoretical concept like graph
coloring is not monolithic but is instead highly contingent on
the context, scale, and objectives of the application.

For Sudoku, the relationship is direct and literal. The puz-
zle’s constraints map perfectly onto the definition of a proper
vertex coloring, allowing the problem to be solved exactly
using algorithms designed for this NP-complete task. The
small and fixed scale of the puzzle renders an exponential-time
algorithm like backtracking computationally feasible, making
it a classic example of tackling an NP-complete problem head-
on.

For DNA fragment assembly, the relationship is more con-
ceptual and metaphorical. The immense scale of genomic data
makes a direct assault on its NP-hard formulation (the Hamil-
tonian Path problem) impossible. This intractability spurred a
crucial innovation: the reformulation of the problem into the
polynomially solvable Eulerian Path problem via de Bruijn
graphs. Within this new framework, the concept of coloring
re-emerges as a powerful heuristic for resolving ambiguities,
particularly those caused by genomic repeats. Here, ”colors”

are not abstract labels to be minimized but are carriers of
vital external information, such as linked-read barcodes, that
provide long-range constraints to guide the assembly algorithm
through tangled regions of the graph.

Ultimately, the connection between the two domains illus-
trates a tale of direct application versus conceptual modeling.
This dichotomy is driven by problem scale and underscores
a critical lesson in computational science: the label ”NP-
complete” is not a final verdict of impossibility but a signpost
that directs researchers toward different strategies. For small-
scale problems, it may be a challenge to be met with compu-
tational power; for large-scale problems, it is a barrier to be
circumvented with algorithmic ingenuity and clever modeling.

B. Suggestions

The insights gleaned from this comparative analysis have
implications that extend beyond these two specific examples.
The P versus NP problem remains one of the most profound
unanswered questions in science, and as datasets continue
to grow in size and complexity, the need to understand and
navigate the boundary of tractability will only become more
acute. The strategies of problem reformulation and heuristic
guidance, as seen in genomics, will continue to be essential
tools for progress.

The future of genomics, in particular, is inextricably linked
to graph-based models. The principles of annotating, or ”col-
oring,” a graph with external data are foundational to the
emerging field of pangenomics. Instead of a single linear
reference genome, a pangenome graph can represent the
complete genetic diversity of an entire species or population.
In these graphs, nodes represent shared sequences, branches
represent variations, and ”colors” can be used to annotate paths
corresponding to specific individuals, populations, or traits.
The conceptual tools of graph coloring, once used to solve
puzzles and later to resolve repeats in a single genome, are
now being scaled up to map the full spectrum of life’s genetic
variation. This evolution demonstrates the enduring power of
abstract computational concepts to provide the language and
framework for scientific revolutions.

ACKNOWLEDGEMENT

The author would like to express their gratitude to God
Almighty (Allah SWT) for the blessings of health and op-
portunity, without which the completion of this paper would
not have been possible.
The author also wishes to extend their sincere thanks to the
lecturers of the IF2211 Algorithm Strategies course, especially
Mr. Monterico Adrian, S.T., M.T., for his invaluable guid-
ance and for sharing a wealth of knowledge throughout the
semester.
Furthermore, profound gratitude is extended to friends who
provided support and encouragement throughout this process.
A special thanks goes to Kimberly Mahdiya Khairunnisa
for her constant encouragement, and to Zulfaqqar Nayaka
Athadiansyah, who patiently provided guidance on formatting
this paper using LaTeX.



Finally, the author hopes that this paper will be beneficial,
both for their own academic development and for the wider
community.

YOUTUBE LINK

Can be accessed here: https://youtu.be/7sS4clvjlh8

REFERENCES

[1] Munir, R. (2020). Teori P, NP, dan NPC (Bagian 1) [Theory
of P, NP, and NPC (Part 1)]. Program Studi Teknik Informatika,
Sekolah Teknik Elektro dan Informatika, Institut Teknologi Ban-
dung. https://informatika.stei.itb.ac.id/∼rinaldi.munir/Stmik/2019-2020/
Teori-P-NP-dan-NPC-(Bagian%201).pdf

[2] Munir, R. (2020). Teori P, NP, dan NPC (Bagian 2) [Theory
of P, NP, and NPC (Part 2)]. Program Studi Teknik Informatika,
Sekolah Teknik Elektro dan Informatika, Institut Teknologi Ban-
dung. https://informatika.stei.itb.ac.id/∼rinaldi.munir/Stmik/2019-2020/
Teori-P-NP-dan-NPC-(Bagian%202).pdf

[3] Mulroy, C. (2022, August 12). What is Sudoku? How to solve the
puzzle and where to play. USA Today. https://www.usatoday.com/story/
life/2022/08/12/what-is-sudoku-solve-puzzle/10299742002/

[4] Munir, R. (2020). Algoritma runut-balik (Backtracking) (Bagian 1)
[Backtracking Algorithm (Part 1)]. Program Studi Teknik Informatika,
Sekolah Teknik Elektro dan Informatika, Institut Teknologi Ban-
dung. https://informatika.stei.itb.ac.id/∼rinaldi.munir/Stmik/2024-2025/
15-Algoritma-backtracking-(2025)-Bagian1.pdf

[5] Singla, A. (2024, May 23). Cook-Levin theorem or Cook’s
theorem. GeeksforGeeks. https://www.geeksforgeeks.org/
cook-levin-theorem-or-cooks-theorem/

[6] GeeksforGeeks. (2024, May 21). 3-coloring is NP-complete. https:
//www.geeksforgeeks.org/dsa/3-coloring-is-np-complete/

[7] Mastering Sudoku. (n.d.). Shidoku. Accessed on June 25th, 2025, from
https://masteringsudoku.com/shidoku/

[8] National Human Genome Research Institute. (2023, August 2).
Shotgun sequencing. https://www.genome.gov/genetics-glossary/
Shotgun-Sequencing

[9] Quiroz-Ibarra, J. E., Mallén-Fullerton, G. M., & Fernández-Anaya, G.
(2017). DNA paired fragment assembly using graph theory. Algorithms,
10(2), 36. https://doi.org/10.3390/a10020036

[10] Pevzner, P. A., Tang, H., & Waterman, M. S. (2001). An Eulerian
path approach to DNA fragment assembly. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 98(17),
9748–9753. https://doi.org/10.1073/pnas.171285098

[11] Mustafa, H., Schilken, I., Karasikov, M., Eickhoff, C., Rätsch, G., &
Kahles, A. (2019). Dynamic compression schemes for graph coloring.
Bioinformatics, 35(3), 407–414. https://doi.org/10.1093/bioinformatics/
bty632

[12] Kellis, M., Korf, I., & Edwards, S. (n.d.). 5.3: Genome assembly II-
String graph methods. In Computational biology - Genomes, networks,
and evolution. LibreTexts. Accessed on June 25th, 2025, dari https:
//bio.libretexts.org/Bookshelves/Computational Biology/Book%3A
Computational Biology -Genomes Networks and Evolution(Kellis
et al.)/05%3A Genome Assembly and Whole-Genome Alignment/5.
03%3A Genome Assembly II- String graph methods

[13] Tolstoganov, I., Pevzner, P. A., & Korobeynikov, A. (2024). SpLitteR:
Diploid genome assembly using linked TELL-Seq reads and assembly
graphs. PeerJ, 12, e18050. https://doi.org/10.7717/peerj.18050

STATEMENT

I hereby declare that this paper is my original work, and
has not been adapted, translated, or plagiarized from any other
source.

Naufarrel Zhafif Abhista
13523149


